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ABSTRACT
Authentication based on touch-less mid-air gestures would
benefit a multitude of ubicomp applications, which are used
in clean environments (e.g., medical environments or clean
rooms). In order to explore the potential of mid-air gestures
for novel authentication approaches, we performed a series
of studies and design experiments. First, we collected data
from more then 200 users during a three-day science event
organised within a shopping mall. This data was used to
investigate capabilities of the Leap Motion sensor and to
formulate an initial design problem. The design problem,
as well as the design of mid-air gestures for authentication
purposes, were iterated in subsequent design activities. In
a final study with 13 participants, we evaluated two mid-air
gestures for authentication purposes in different situations,
including different body positions. Our results highlight a
need for different mid-air gestures for differing situations and
carefully chosen constraints for mid-air gestures.
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Categories and Subject Descriptors
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Inter- faces - Interaction styles;

1. INTRODUCTION
There is a need for authentication in a world pervaded

with more and more digital technologies. We authenticate
ourselves by entering a PIN when we want to pay with our
credit card. We get access to our mobile phones by connect-
ing points on our smartphones. We type in passwords for
authentication on websites. We use iris scanners for authen-
tication in high-security areas. Thus, different interaction
modalities are used for authentication in different contexts.
The different modalities are often dependent on various fac-
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tors, such as the degree of security and the availability of
technology, as well as environmental factors like background
noise or the physical position of interactive elements.

Another requirement for the right choice of authentication
modalities is the “cleanness” of the interaction context (e.g.,
aseptic environments). Examples for such environments are
well known from the medical domain. In such domains, key-
boards or touch screens are not always the best choice for
authentication. Users often wear gloves and must not con-
taminate themselves or the environment. In cooperations
with an industrial partner from the semiconductor domain,
we recognised that there is also a need for a clean and ide-
ally touch-less way of interaction in the industrial domain,
especially in the clean room.

A clean room in the semiconductor context is often a noisy
and large environment, where workers need to wear special
clothes including rubber gloves and a mask in order to min-
imise dust, which could cause defects in the production pro-
cess of integrated circuits (see Fig. 1). Workers in clean
rooms are mobile and need to authenticate themselves re-
peatedly during their daily activities on different worksta-
tions and in different situation. This is often realised via
text-based passwords. Most workstations in the clean room
are desktop computers, which are either used in a standard
setting (i.e., seated with monitor, keyboard, and mouse po-
sitioned on a desk) or in a setting where the workers have
to interact with the system while standing with the monitor
and keyboard attached to the wall.

Figure 1: Clean room in a semiconductor factory.
Operators are wearing suits and rubber gloves in
order to reduce dust circulation.

While keyboards and mice provide an effective and well
known way of interaction, they are also considered in-proper
for clean rooms, since they attract dust. Therefore, more
and more touch interfaces are integrated in clean rooms.
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However, even touch interfaces pose an issue in clean rooms,
since dust is attracted by touch screens and contaminate
operators’ gloves when they touch the screens. Following
this argument, the interaction in the clean room should be
touch-less whenever possible. Apart from using well-known
biometric approaches such as face-, iris-, or voice-detection,
we propose to use mid-air gestures for a touch-less authen-
tication purposes.

Recently, touch-less interaction has vastly improved that
off-the-shelf devices, such as the Leap Motion1, sensor can
be purchased for low costs. These sensors can recognise hand
biometry and hand gestures and allow touch-less and gesture
based interaction. Moreover, mid-air gestures are a promis-
ing modality for interaction in clean rooms and hand biom-
etry information gleaned from mid-air gestures may even
provide a clean way for authentication.

In order to explore the potential of mid-air gesture for
authentication, we performed a series of studies. Hereby,
we were motivated by related work in touch and gesture-
based authentication [4, 26] , which has shown that gesture-
based authentication can be an alternative to text-based
passwords. Therefore, we aim to address the following re-
search question in this paper, can authentication based on
mid-air gestures and the Leap Motion controller be used in
situation relevant for clean rooms?

In the following section, we first provide some background
in gesture-based authentication. Then, we present our ex-
ploration of mid-air authentication gestures, which started
with a field study and a series of subsequent design exper-
iments based on inspirations gained from visits to actual
clean rooms. The design experiments were conducted to
specify the design problem and to infer design considera-
tions for authentication gestures. Afterwards, we present a
study with 13 participants, which shows authentication ac-
curacy rates for two gestures performed in different situation
and an overview of the user experience of the mid-air ges-
tures based authentication method. We conclude that with
recognition rates for single gestures around 89% that mid-air
based authentication gestures are already an alternative for
authentication based on touch gestures. Considering that
3D controllers are compared to touch sensitive screens in
their infancy, there is great promise in mid-air gesture based
authentication.

2. BACKGROUND
With systems and services becoming increasingly mobile

and ubiquitous, novel approaches for authentication need
to be easy to use in different situations. For mobile de-
vices, which are used on the go, motion and shape-based
approaches (e.g., password patterns used by Android-based
mobile phones) have been introduced as alternatives to text-
based password schemes (e.g., PIN-authentication). These
approaches make use of the pictorial superiority effect [18]
and the human motor memory [28] to reduce the cognitive
burden of memorizing passwords.

While shape-based authentication approaches are easy to
memorise and use, security aspects have been criticised due
to the fact that they are easy to spy on (e.g., [3]). In order
to improve the security of shape-based authentication ap-
proaches on mobile phones related work has investigated the
use of an additional implicit authentication layer. Based on

1http://www.leapmotion.com

a series of user studies, DeLuca et al. [4] were able to show
that inter-personal differences in drawing the same shape
could be used to improve the security of shape-based au-
thentication on mobile phones.

Inter-personal differences have also been exploited by Sae-
Bae et al. [26] in a gesture-based authentication approach for
multi-touch devices, which is based on a study with iPads.
They developed a comprehensive set of five finger gestures
based on hand ergonomics and were able to show that there
are behavioural traits in gestures, which can be used to im-
prove shape-based authentication on touch screens. On one
hand, these inter-personal differences in human gestures can
be disturbing when designing user interfaces due to the in-
troduced inter-personal variability (variances among differ-
ent users might get interpreted as distinct“commands”). On
the other hand, they can be exploited for designing person-
alised user interfaces (the same gesture is interpreted differ-
ently when conducted by different users). In any case, these
inter-personal differences are essential for gesture-based au-
thentication.

In recent work the Leap Motion device has been used for
recognising handwriting in the air [30] as well as for sign
language recognition [21].

However, the capabilities of these sensors for authenti-
cation purposes have not yet been investigated in depth,
including the influence of context on performing a mid-air
authentication gesture.

Human (hand) gesture recognition [17, 14] has already
been explored in many applications like sign language recog-
nition [20], device [19] and software control [25], augmented
reality application [23] and authentication [1, 7, 10]. We may
distinguish instrumented sytems, which use trackable mark-
ers mounted to the fingers (e.g., infrared targets [23]) and
non-instrumented systems relying on vision techniques only.
Different types of sensors can also be used ranging from clas-
sical vision using still-image or video cameras [13, 22, 12, 31,
19, 7] to various depth imaging techniques [2, 32]. Research
in mid-air based interaction has increased since sensors, such
as Microsoft’s Kinect device, have been on the market. Ap-
plications involving the Kinect include static hand gesture
recognition [11, 24], dynamic hand/arm gesture recognition
[33], software control [25], surgeons assistance [15], and au-
thentication [29]. Other sensors employed for (hand) gesture
recognition include (smartphone integrated) accelerators [9,
10, 16], virtual reality interfaces like Cyber Glove [20], and
specific biometric devices (e.g. a Smart Pen [1]).

With respect to hand gesture-based authentication, few
techniques have been proposed. Arm movements are cap-
tured for this purpose by (smartphone integrated) acceler-
ators [9, 10, 16]. Mid-air handwriting recognition for au-
thentication is conducted with different sensors (Kinect [29],
Bio Smart Pen [1]); sign language recognition for identifying
user-specific pass-codes is suggested in [12].

Independent from gesture recognition techniques, the ob-
vious benefit of mid-air hand gestures is that humans al-
ready use their hands and fingers in different situations to
manipulate real world objects. In the past, interaction de-
sign evolved through making use of human skills to improve
interaction with the digital world [5]. Therefore, it can be
assumed that mid-air gestures have the potential to improve
interaction with ubiquitous systems, allowing users to inter-
act more ”naturally” with the digital world in different sit-
uations. A particular challenge for ubicomp application in
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clean rooms is that users need to perform a log-in action in
different situations.

Although a multitude of authentication techniques exist,
techniques for ubicomp application that use biometric in-
formation are favoured. Biometric information is always at
hand and available anytime and anywhere. With off the-
shelf-3D controllers that can track detailed movements of
fingers, the usage of fine-grained mid-air hand gestures for
authentication seems to become possible.

3. EXPLORATION OF MID-AIR GESTURES
FOR AUTHENTICATION

The Leap Motion controller is a camera-based 3D con-
troller, which uses depth and RGB cameras similar to Mi-
crosoft’s Kinect device to recognise “body” movement. How-
ever, this 3D controller is a light, small sized device with a
short range (approximately 1 inch to 2 feet above the de-
vice). Its software has been developed for a particular use;
i.e., recognising palm and finger movements in detail. Be-
ing a small and lightweight 3D controller, it is flexible and
can be attached to various surfaces (e.g., walls or desks). In
fact, the device is already being embedded in laptops (i.e.,
the HP envy Leap Motion). Due to the device dimension, it
could also be worn on the body (e.g., like a wrist watch).

Being a vision based tracking system, the Leap Motion
sensor faces some obvious limitations, such as being able to
recognise fingers only if they are in the field of vision. For
example, hand rotations along the lower arm are difficult to
recognise by the device if the device is used in a seated pos-
ture with the device placed on a desk. Based on our initial
explorations, we also realised that the hands of some people
are recognised better than others. To get an idea about how
well the sensor tracks hand movements, we collected data
in a field study, where we logged data from more then 200
people.

3.1 Field study
At a science event in November 2014, a few departments

of University (blinded) presented their research to the pub-
lic in a large shopping mall. Everyone could attend this
event and engage with demonstrators, prototypes, and de-
sign artefacts. At this event, we presented different gesture
based interfaces, which made use of the Leap Motion sensor.
In one display, visitors could use a capacitive pen in combi-
nation with a Leap Motion sensor to create artful drawings.
Visitors had to perform a specific mid-air gesture before they
could start drawing.

By rotating their palm clockwise by 70 degrees, they could
clean the canvas (screen of an iPad device). We logged hand
movement data associated with this initial gesture. On a
monitor that was positioned in front of the users, this initial
gesture was presented as part of a promotional video for the
booth. The 3D controller could either be positioned on the
desk next to the iPad or worn on the wrist (e.g., as it is
done by the participant in Figure 2). To allow users to wear
the 3D controller on their wrist, we build an adjustable vel-
cro wristband. Figure 2 presents the final setup, which was
used at the field study. As also presented in Figure 2, many
of the booth visitors were teenagers and the situation was
crowded. We collected data from more then 200 visitors,
195 of those have agreed to fill in a post-hoc questionnaire
providing demographic data. Inspection of the data we col-

lected showed that only in 12% of the time 5 fingers were
recognised (in 25% of the time 4 fingers, in 37% 3 fingers,
in 53% 2 fingers and in 75% 1 finger was recognised) Even
though the palm was recognised in 25 %, no fingers were
recognised.

Figure 2: Setup at the science event. A participant
has the 3D controller attached to his right wrist and
is performing mid-air gestures with his left hand to
interact with information presented at the iPad.

Further inspections of the data showed that the Leap Mo-
tion SDK only provides finger IDs depending on the order
in which fingers are recognised for each frame, thus no se-
mantic information is provided, such as if a recognised finger
matches to a thumb or an index finger, etc. Furthermore, the
same finger ID is mapped to semantically different fingers of
the hand over the period of performing a gesture (see Fig-
ure 3). For authentication gestures, it is necessary to map
fingers to their respective movement paths otherwise bio-
metric informations is lost. Furthermore, five fingers should
be recognised to get maximal data from the hand geome-
try. The main reason that not all fingers were recognised
was that fingers were not clearly separated during gestures.
Since gestures are not performed in exactly the same space
(e.g., at the same distance to the sensor), it is also necessary
to transfer gesture data to a canonical form. This is needed
in order to recognise the same gesture even if it is performed
with a slightly different orientation and at a different space.
Taking these design constraints into account, we decided to
design specific authentication gestures.

3.2 Designing authentication gestures
Inspired by the set of categories for five-finger touch ges-

tures, which were reported by Sae-Bae et al. [26], we defined
a five finger mid-air gesture for authentication (see Figure
3). We chose a complex gesture including circular finger
and palm movements as well as finger closing and finger
opening movements (all movements accruing in three dimen-
sional space) to capture maximal biometric information and
to study the boundaries of what is feasible.

We presented a video recording of this gesture and asked
several people from our own department to replicate this
authentication gesture. We used the data for further explo-
ration. Figure 3 also presents the data, which was captured
by the Leap Motion device. Even though we asked users
to separate their fingers in the beginning of the gesture to
ensure that all five fingers were recognised in the beginning,
exploration of the captured data showed that for some users
the sensor failed to recognise all five fingers in the beginning.

3.2.1 Normalising hand gesture data
Recognising five fingers in the beginning is important since

we use the initial state of the hand to match movement se-
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quence to individual fingers. Individual fingers are recog-
nised by computing the distance between fingers. If the fin-
gers are spread, the thumb has the highest distance to the
other fingers. The index finger is nearest to the thumb, etc.

Once individual fingers are matched, the gesture data can
be normalised based on the position of the palm, the index
finger and the pinky by performing transformations; i.e.,
moving the palm to the origin, rotating the index finger
twice, so that it’s tip is on an the z-axis and on the x-plane.
Afterwards, the pinky is rotate also on the x-plane.

In earlier attempts, we used the thumb instead of the
palm. However, since the thumb is the most flexible finger
it caused higher intra-personal difference (the same persons
positioned their thumbs differently in the beginning of a ges-
ture), which is undesirable for an authentication approach.

Figure 3: On the upper half a gestures is presented.
On the lower half data representing the gesture be-
fore and after performing a matching algorithm is
presented. The algorithm matches individual fin-
gers to movement paths.

After matching captured data to individual fingers and
normalising the gestures using the camera coordinate sys-
tem, we needed to match individual fingers to the move-
ment paths. This was a challenge since not all fingers were
recognised during performing the gesture. Figure 3 visu-
alises captured data before and after performing the match-
ing algorithm.

3.2.2 Design workshop
In order to reflect on results gained and to discuss the

design of authentication gestures in general with interdisci-
plinary professionals, we conducted a design workshop with
six participants with backgrounds in computer science, game
design, sociology, and psychology. We did this to obtain
qualitative and critical feedback to the authentication ges-
ture we designed so far and create new ideas for gestures
taking into account restrictions of the Leap Motion sensor
and naturalness of performing the gestures for authentica-
tion purposes.

In the workshop, we first presented our idea of using mid-
air gestures for authentication. Then, we demonstrated the
Leap Motion controller, what restrictions it has, and how
it could also be worn on the wrist or attached to a wall.
Three of the 6 participants have already visited clean rooms
and knew the context well. We asked participants to walk
around and perform mid-air gestures in situation relevant for
the clean room to build empathy for the topic; i.e., seated
with imagining the sensor on the desk and standing in front

of a whiteboard with a sensor sketched on the whiteboard.
Participants could also explore the capabilities of a Leap
Motion sensor during the workshop. The workshop took an
hour and several ideas were generated on top of our previous
results.

The following main issues were raised in the workshop.
Without visual feedback, it is difficult to memorise a ges-
tures even if the gesture was chosen by a user themselves.
Gestures should be short, simple and easy to repeat. Due
to hand and body ergonomics, different contexts might need
different gestures which needs to be explored. Shoulder, up-
per arm, and elbow muscle behaviour could also be used for
the authentication.

Based on the insights gained and suggestions for authenti-
cation gestures, we refined two gestures and designed visual
feedback for those gestures.

• Gesture 1 was an “upward” movement of the hand,
with the hand slightly close and and opens. It makes
use of finger movement behaviour.

• Gesture 2 is an “upward” movement, with the hand ro-
tating anti-clockwise. It makes use of shoulder, upper
arm, and elbow movement and, consequently, associ-
ated muscle behaviour.

For both gestures, the start and the end positions have
been chosen to be different to allow an improved matching
of individual fingers to movement paths. As visual feed-
back, we created an animation of an hand icon. We chose
a very simple and abstract presentation, so that it could be
presented on different kinds of small sized displays. Fur-
thermore, presenting an abstract visualisation would allow
users to define themselves how exactly the gestures should
be performed. The key purpose of visual feedback was two-
fold: first, to provide feedback on the recognition quality
(e.g., hand icon turns green if all five fingers are recognised)
and, second, to guide and also remind the user of “what”
and “how” to perform the gesture. Once the user is ready
and five fingers are recognised, the hand icon was animated
slowly to allow the user to “mirror” the gesture. We chose
as duration for the animation two seconds based on our own
experience.

4. USER STUDY
In order to investigate how the designed gestures would

be perceived by users and to explore intra and inter-personal
variabilities in performing mid-air authentication gestures,
we conducted a user study. Moreover, we investigated their
authentication strength in three different contexts

The three contexts were chosen based on prior observa-
tions during visits to actual clean rooms. There are two
main situation in which workers authenticate themselves
on workstations; i.e., seated with monitor, keyboard, and
mouse positioned on a desk or standing with the monitor
and keyboard attached to the wall. Depending on the phys-
ical setting, keyboards are even vertically attached to a wall
with the mouse being placed on a small piece which is also
attached to the wall. The third context, which we studied,
includes a concept for a wearable 3D controller. Authentica-
tion on a wearable and mobile interfaces is a future alterna-
tive to the currently existing contexts. Using a small sized
3D controller as a wearable on a workers wrist is a realis-
tic alternative for an interface in clean rooms, since workers
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already have special clothes that they need to wear during
their work. In addition, there is a trend for wearable devices
outside the clean room context (i.e., smart watches), which
might inspire the future interface landscape in clean rooms.

Figure 4: The three conditions in which mid-air
gestures for authentication were studied a) 3D con-
troller is positioned on the desk. b) 3D controller is
positioned on the wall. c) 3D controller is worn on
wrist.

4.1 Study setup
Figure 4 presents the three different physical setups we

asked participants to perform mid-air authentication ges-
tures. The visual guidance was presented on a second gen-
eration iPad which we positioned in each physical setting
in a way that participants could easily perceive the visual
feedback. For the study we recruited thirteen right handed
participants (7f, 6m) between 26 and 41 years of age. All
participants completed the study within 20 minutes.

Participants were asked perform each of the two gestures
in 3 different conditions for 10 times in counter balanced
order. The rate in which data was collected was between
50 and 55 per second. In sum, we collected data from 260
gestures and, for each gesture, we had between 100 and 110
frames. Participants were also told that the visualisation
provides them guidance but that they can define for them-
selves how to perform the gesture specifically. After com-
pleting the tasks, participants were interviewed with the goal
to get qualitative feedback on performing the gestures in die
different conditions.

4.2 Analysis and results
In order to analyse the hand data, we normalised the data

as we described it in the previous section and used dynamic
time warping (DTW); i.e., the implementation for R by Toni
Giorgino [8]. We chose to use DTW, since it has been al-
ready used in related work to compute dissimilarities be-
tween gestures for authentication purposes ([4, 26] in a very
similar manner with similar sets of data from gestures).

DTW compares two gesture based on time series (e.g., a
series of x, y and z coordinates of fingertip positions over the
period of a gesture), which can be of different lengths and
produces a distance (i.e., Euclidean distance) value between
0 and a positive value. The value is higher for gestures that
are less similar to each other. Data from each gesture is for-
matted in way that it can be used as a parameter for DTW:
Gesture(t) = [palm1, thumb1, indexF inger1, ringF inger1,
pinky1, ..., palmn, thumbn, indexF ingern, ringF ingern,
pinkyn] where n is the number of frames (i.e., a number
between 100 and 110). Hereby, palmi (for example) is the
vector of x,y and z co-ordinates of the ith record of the palm
position; palmi = [x, y, z]
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Figure 5: Mean values and intra-personal variability
in performing the two gestures are presented on the
left (for each condition). Similar values for Inter-
personal variability are presented on the right. Y-
axis denotes the DTW distance, a value presenting
the dissimilarity between two gestures. Error bars
denote the standard deviation.

We computed the mean DTW distance and the associated
standard deviation (see Figure 5) for each participant, each
condition, and each gesture . Based on these values, we
computed the intra-personal and inter-personal variability
of participants of our study. The difference between intra-
personal and inter-personal variability, which is apparent
in all conditions, is promising and indicates that mid-air
gesture could be used for authentication. Interestingly, the
differences seems to be highest for the “onbody” condition.
This might be due to the fact that users not only have inter-
personal differences in performed gestures but also differ-
ences regarding their body posture when having the sensor
on their wrist.
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Figure 6: For the condition in which participants
were asked to perform gesture 2 with the 3D control
attached to the wall FAR and FRR are plotted for
a range of thresholds. The Equal Error Rate (EER)
is identified and thresholds for dissimilarity score is
derived.

4.2.1 Analysis of biometric data
Similar to how Sae-Bae et al. [26] analysed authentication
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Table 1: Equal error rates and derived thresholds
Gesture context EER Threshold

1 ontable 0.0973 25926
1 onwall 0.1196 27678
1 onbody 0.1025 29669
2 ontable 0.1322 25926
2 onwall 0.1144 30365
2 onbody 0.1365 32224

gestures based on multi-touch data, we analysed the biomet-
ric data in mid-air gestures using Equal Error Rate (EER) to
measure accuracy. The EER denotes the rate where False
Acceptance Rate (FAR) and False Rejection Rate (FRR)
are equal. FAR is compute by dividing the number of incor-
rectly verified forgery cases by the number of forgery cases.
FRR is compute by dividing the number of rejected genuine
cases by the number of genuine cases. Since we collected 10
samples (i.e., gestures) from each participant in each con-
text, we used the first five samples to chose a template. The
sample with minimum sum distance to the other four sam-
ples was taken as the template. The last five samples were
used to test for genuine cases.

In order to calculate EER, all thresholds were used to
compute FAR and FRR values. FAR and FRR were plotted
for all thresholds to identify the ERR (see Figure 6). Table
1 presents the EER values and derived thresholds for both
gestures and all three contexts. Overall, the two mid-air ges-
tures achieved EER of 11.71% (as an averaged value between
the two gestures). Gesture 2 achieved over all threse context
ERR of 12.77 % and gesture 1, EER of 10.65101 %. Figure
7 presents corresponding accuracy rates in percentage.
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86.35%

90.27%

88.04%

89.75%
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ontable%
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onbody%

gesture%1%
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Figure 7: Overview of gesture accuracy ( number
of authenciatnion gestures that have been correctly
accepted or rejected in %) for different contexts.

4.2.2 Analysis of user experience
In addition to measuring the authentication strength of

mid-air gestures, we were also interested in exploring how
users would perceive mid-air gestures as a modality for au-
thentication. In order to get initial insights we used a se-
mantic differential questionnaire. Participants were asked
to answer the questions at the end of the study. Figure 8
provides an overview.

Afterwards, participants were briefly interviewed. Re-
garding the specific gestures, there was no overall response
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Figure 8: Overview of self-reported items, which
participants were asked to provide in order to de-
scribe how mid-air gestures for authentication pur-
poses were perceived overall.

on which gesture was easier or better for the purpose of au-
thentication. Half of the participants preferred gesture 2,
since rotating their palm did not include fine grade finger
movements and was less exhausting. The other half pre-
ferred gesture 1, since they did not have to move their el-
bows and shoulders. However, both gestures were perceived
as easy to perform.
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Figure 9: Overview of user preferences regarding
mid-air gesture and context in which mid-air ges-
tures were performed.

Interestingly, female participants preferred gesture 1 and
male participants gesture 2 (see Figure 9). Participants were
also asked to state in which context they felt most com-
fortable performing mid-air gestures. Our results show no
obvious preference for one specific context. However, par-
ticipants mentioned that they think having the sensor on
the arm is, on the one hand practical while, on the other, it
is mentally more demanding since they need to coordinate
both arms.

The items of the questionnaire (see Figure 8) were inspired
by various user experience questionnaires related to the at-
tractiveness of a system or emotions associated with inter-
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active systems, etc. The purpose of the questionnaire was to
get an initial impression of how users perceived performing
mid-air authentication gestures. Users choose mainly posi-
tive attributes to describe their experience, which motivates
us to follow this line of research in our future work.

5. DISCUSSION
The accuracy rates, which we have observed in our study

are very promising, considering that accuracy rates in multi-
touch gestures [26] have been reported to be between 81-93%
depending on the individual gestures. We observed accuracy
rates between 86-91% for two different kinds of mid-air au-
thentication gestures in different contexts. Sae-Bae et al.
[26] suggest that two gestures, which are performed in se-
quence could improve accuracy rates for touch gestures up
to 97%. Furthermore, they report accuracy rates of 97%
for gestures, which were user defined. Through allowing
users to define their own gestures accuracy rates for mid-air
gestures could also be increased, making the technique scal-
able. However, due to the restrictions of the Leap Motion
controller and the fact that users are not yet familiar using
mid-air gestures, one would need to provide an easy way to
assist in generating authentication gestures. Based on our
experience, we would suggest a simple application, which vi-
sualises a user’s hand gestures while they try out different
gestures, providing feedback on how well the gesture would
suit for authentication (e.g., how well fingers were recognised
over the duration of the gesture).

In comparison to related work, we chose to use only one
template (i.e., gesture) as a reference from each user for each
context. We did this since we wanted the computation to
be fast, so that the algorithm could be implemented and
used in a real system in near future. However, it is not
unusual to use more then one template; i.e., to use a set of
templates and take the best match as the result. Using a
set of templates would improve the accuracy rate.

Furthermore, we are aware that DTW produces more false
positives due to the fact that the algorithm tries to match
two time series (with different lengths). In our future work,
we will explore other implementations (e.g., a python based
implementation) of the DTW algorithm, which on the one
hand might compute dissimilarity scores faster, allowing more
than one template to be used as a reference. On the other
hand we would investigate implementations [6] to improve
the fact that DTW tends to produce false positives.

DTW is not claimed to be a better or worse choice than
other possible approaches (e.g., machine learning). However,
if there is potential in mid-air authentication gestures, then
there is a high chance that DTW will show it [4, 26].

In figure 5 we presented the intra- and inter-personal vari-
ability, which seemed to suggest that differences are higher
for the “onbody” context. However, the computation of au-
thentication accuracy rates shows no visible difference be-
tween contexts. This could be due to possible outliers, and
their influence based on the sample size of the user study.
Based on our observations during the study, there was no
good reason to take out samples from the analyses. However,
since participants had to coordinate both hands in the “on-
body” context, there might be a greater chance for outliers
compared to contexts in which the sensors was physically
attached to a still surface. We used the camera coordinate
system for the normalization process, which could be an ad-
ditional explanation for the slightly lower performance of

gesture 2 when the sensor is worn on the body.
The rational for using the Leap Motion sensor is that it

was a low cost solution, which potentially could be pur-
chased in large numbers and integrated in a clean room
environment in near future. Furthermore, it provided an
easy way to use palm and finger motions without exper-
tise in vision based recognition systems. Compared to the
data provided by the leap motion, sensors using a skeleton-
based gesture recognition would include considerably more
complexity. Since, we used the Leap Motion controller, our
results are specific for this 3D controller. However, with
future improved 3D controllers, we expect improvements in
usability as well as user experience of mid-air authentication
gestures.

In sum, our investigations have shown that authentication
based on mid-air gestures and the Leap Motion controller
can be used in different contexts relevant for clean rooms.

Interaction based on mid-air gestures has the potential
to replace existing interaction modalities in clean rooms,
whenever possible. In practice, we expect to see interac-
tion concepts for clean rooms, where mid-air gestures will
be used in combination with other modalities. Based on our
results, we could imagine to combine touch and touch-less
gestures also for authentication purposes. Fusing existing
interaction modalities in clean rooms with mid-air gestures
would also introduce additional benefits, which are typical
for multi-modal interfaces (e.g., naturalness of interaction,
or improved performance).

6. CONCLUSION
We argued that clean rooms have particular constraints on

interaction modalities and require clean and ideally touch-
less ways to interact with workstations, which are distributed
in the clean room depending on available space. Throughout
the paper we put emphasis on reflective design activities [27]
trying to explore mid-air authentication gestures. We used
the Leap Motion controller to restrict but also focus our de-
sign activities. Based on visits to clean rooms we decided
to study mid-air authentication gestures in two situation in-
cluding body and 3D controller positions (i.e., seated with
the 3D controller placed on the desk and standing with the
3D controller attached to a wall). Furthermore, we included
a third context, which we thought has future relevance (i.e.
using a 3D controller attached on the wrist). We were able
to design two authentication gestures, which not only were
perceived as easy to perform and suitable for all relevant sit-
uations, but also provided hand biometry information which
could be used for a clean way of authentication.
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